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Abstract—The complicated multi-step attacks, such as Advanced Persistent Threats (APTs), have brought considerable threats to
cybersecurity because they are naturally varied and complex. Therefore, studying the strategies of adversaries and making predictions
are still significant challenges for attack prevention. To address these problems, we propose DeepAG, a framework utilizing system logs to
detect threats and predict the attack paths. DeepAG leverages transformer models to novelly detect APT attack sequences by modeling
semantic information of system logs. On the other hand, DeepAG utilizes Long Short-Term Memory (LSTM) network to propose bi-
directional prediction for attack paths, which achieves higher performance than traditional BiLSTM. In addition, with previously detected
attack sequences and predicted paths, DeepAG constructs the attack graphs that attackers may follow to compromise the network.
Furthermore, DeepAG offers the mechanisms of Out-Of-Vocabulary (OOV) word processor and online update respectively to adapt new
attack patterns that show up during detection and prediction stages. The experiments on open-source data sets show that more than
99% of over 15000 sequences can be detected accurately by DeepAG. Moreover, DeepAG can improve the baseline by 11.166% of
accuracy in terms of prediction.

Index Terms—Attack prediction; Deep learning; Transformer; LSTM; Attack graph
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1 INTRODUCTION

Unlike traditional attacks, multiple-step attacks, such as
advanced persistent threats (APTs) [1], perform several in-
trusion steps to reach their specific objectives. Such attacks
are usually equipped with strong abilities to covert, and
generally bypass traditional detection tools which rely on
signature-based detection [2] [3]. Besides, APTs are not the
one-hit attack, which means the intruders tend to access the
target systems for many times. Therefore, once a network
is infiltrated, the intruders will remain in the system to
attain as much information as possible. In many APT case
studies, these actions can last several months or even years
as intruders repeat the exfiltration process for many times.
Moreover, attackers also frequently use novel techniques
to obfuscate their actions. However, many traditional sys-
tems for threat prevention [4] [5] like Intrusion Detection
Systems (IDS), Intrusion Detection and Prevention Systems
(IDPS), Advanced Security Appliances (ASA), are no longer
effective because they fail to exploit cyber-threats tactics,
or produce high false alarm rates. Therefore, an approach
capable of making timely, concrete, and robust detections
and predictions for attacks is urgently needed.

Detecting and predicting the actions of attackers qual-
ify as a big data problem, because of the fast booming
number of attacks [6]. In that case, machine learning has
been widely studied in cybersecurity [7]. Some researchers

[8] [9] applied Bayesian Network to reveal the zero-day
attack paths or perform the causal analysis. However, it
requires the posterior probabilities of attacks occurring at
each node, which is not easy to tackle as the prior knowl-
edge for unexpected and sophisticated strategies taken by
adversaries is difficult to obtain. Okutan et al. [10] clus-
tered security domains and achieved high-level accuracy
in detecting attacks. Nonetheless, both Bayesian network
and clustering are generally offline approaches, which mean
that they cannot reflect the real-time behavior of network
intrusion. Therefore, researchers can only detect the attacks
after happening, making sufficient and effective prevention
less possible. Other researchers [11] [12] presented methods
based on Hidden Markov Models (HMM) [13] to predict
multiple-step attacks, like DDoS attacks. Although HMM
is widely used for detection of multi-stage attacks, existing
approaches address only a single multi-stage attack instead
of considering the problem of interleaving multi-stage at-
tacks, which may compromise the detection performance of
such attacks.

The recent breakthrough application of deep learning to
machine translation has demonstrated the great potential
of neural models’ capability of understanding natural lan-
guages [14] [15]. From that perspective, a majority of work
like Log2Vec [16], LogRobust [17], and LogAnomaly [18]
in recent years utilized semantic vector sequences of logs
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to detect attacks based on the deep learning framework,
and thus fixing semantic gaps. Nevertheless, they can only
make a binary prediction of whether the sequence includes
attack, instead of where the anomaly points are in the se-
quences. Besides, Log2Vec, LogAnomaly, and Deeplog [19]
all leverage a single LSTM for predictions. However, due
to the bias of one-way model that may result in insufficient
learning, it cannot perform very well in matching the top
1 prediction with the label, because its last layer (SoftMax
layer) will assign negligible probabilities to many other
predictions that may have influence on the probabiilities
of top predictions.

Many approaches like CloudSeer [20] and Deeplog con-
structed workflows or attack graphs based on log analysis
that is available and valuable for recording system states
at various points. However, CloudSeer [20] is limited to
single task execution, regardless of the complex relation-
ships among networks. Although Deeplog [19] handled log
messages produced by several different threads or concur-
rently running tasks, we note that it is not suitable when
processing more sophisticated and non-linear relationships
like multiple branches caused by sophisticated strategies
of attackers. In order to construct the attack graph, other
approaches like HinDom [21] and NetCycle+ [22] used IP
address, domain name, and malware as different node in-
frastructures, and capture their relationships by defining the
meta paths or meta graphs. However, feature engineering in
these works is significant but complicated and difficult, as
it requires a large amount of domain-specific knowledge to
define great rules for the meta paths and meta graphs.

To sum up, we face three key challenges: (1) how to
simultaneously detect attacks and locate the attack points
based on logs; (2) how to overcome the challenge of insuffi-
cient learning caused by bias of one-way model; (3) how to
model non-linear dependencies and construct attack graphs
to help users master the strategies of intruders.

To cope with the above challenges, we propose DeepAG,
an online approach capable of simultaneously detecting
APT sequences and locating attack phases in the sequences
respectively utilizing the log semantic vectors and indexes,
and constructing attack graphs according to aforementioned
log indexes. When attack sequences are detected, DeepAG
can locate the abnormal points of the sequences. First, we
extract the lexical and semantic information [16] of logs and
vectorize them in order to reduce losses of log information.
In particular, the log sequence we utilize is comprised of
several continuous log sentences, which can help find the
abnormal user behavior sequence as well as show the ab-
normal points. To detect attacks, we then leverage the trans-
former model [23], which deals with the high-dimensional
semantic vectors in parallel and helps reducing the running
time. Besides, we propose the bi-directional model to learn
the relationships of locations among log index sequences.
Based on forward and backward LSTMs, it can generate
multiple sequences to provide more information for reliable
predictions, unlike traditional BiLSTM [17] which makes
single-time-step predictions for the same sequence. Besides,
we introduce the mechanisms of OOV word processor and
online update to overcome insufficient learning of detection
and prediction models respectively. In the end, DeepAG
constructs the attack graph which models the non-linear de-
pendencies and intuitively demonstrates the attack phases

to help users master strategies of adversaries. We evaluate
DeepAG on the open-source data sets of four different
system logs: HDFS, OpenStack, PageRank, and BGL logs.
DeepAG can efficiently achieve real-time attack detection,
which reduces time costs by over 3 times compared to its
baselines.

To the best of our knowledge, we are the first to design
a framework to simultaneously make the log-entry-level
detections for attacks and locate the definite anomaly points
in the sequences. We also propose a novel approach to
model non-linear dependencies among system logs. In sum-
mary, the contributions of this paper can be summarized as
follows:

1. We leverage the transformer models to novelly rep-
resent log sequences with vectors, which reduce the loss of
semantic information and can process log vectors parallelly
for attack detection, only costing less than 40% time of that
of other state-of-the-art methods.

2. We are the first to propose the bi-directional model in-
cluding forward and backward LSTM for locating anomaly
points over system logs. In that case, it avoids the bias of
a single LSTM model, and thus improves the performance,
especially recall when confirming attack points in the logs.

3. DeepAG can model non-linear dependencies among
attack sequences through the attack graphs and mark the
anomaly points, thus showing the attack paths intuitively
for users and helping them make proactive prevention.

4. Experiments on open-source data sets show that
DeepAG exhibits low runtime overheads (less than 1 sec-
ond), reducing time by over 3 times compared to four base-
lines in terms of attack detection. Besides, DeepAG can suc-
cessfully make detections among almost 100% sequences.
It also improves accuracy by over 10% when locating the
attack points.

TABLE 1: Comparison of approaches

Approaches [19] [16] [18] [17] DeepAG

Attack 3 7 7 7 3
prediction

Feedback 3 3 3 7 3
mechanism

Dependencies 3 7 7 7 3
modeling

Semantic gap 7 3 3 3 3
troubleshooting

A comparison of DeepAG and prior work has been
outlined in table 1. Comparatively, the proposed DeepAG
can not only predict binary attacks, but also predict concrete
attack paths. Moreover, DeepAG incorporates unexpected
samples through feedback mechanisms. It also models non-
linear dependencies through attack graphs according to
the attack sequences which is easier for users to analyze
the strategies of intruders. Moreover, DeepAG reduces the
semantic gaps. Comparing with other three semantic-based
approaches [16] [17] [18], DeepAG performs much better
when tested on two different logs with only one model
trained on either one type of logs.

The rest of paper is organized as follows. Section II
introduces the threat model, our motivation and goals.
Section III introduces the system architecture in detail.
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Section IV compares DeepAG with its baselines in terms
of theoretical analysis. Section V describes the experiments
and performance of DeepAG by comparison with the state-
of-the-art baselines. Section VI introduces the related work.
Section VII discusses challenges of practically deploying
deep learning models of cybersecurity. Section VIII sum-
marizes the paper and outlines future work.

2 THREAT MODEL

When hackers attack a computer, they will leave traces of
modifications, which will be recorded in the system logs.
The IIS (Internet Information Server) log file deployed on
the Windows Server has the function of event logging: who
visit the site, what content the visitors view, and so on. By
checking log files regularly, webmasters can detect which
aspects of the servers or sites are vulnerable or facing other
security risks, and thus analyze the hackers’ strategies and
entire attack timeline from logs of the following sources:
attacked server and the user operation history.
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Fig. 1: Infiltration attack shown through the timeline

Fig. 1 depicts nine key phases of a complete infiltration
attack through the timeline from 0 : 00 to 2 : 30. At the
beginning, the hacker attacks the external web server and
obtains the authority, which is the springboard to access
other internal web servers. Then, to collect the information
of the target system, the attacker identifies the surviving
host IP in the intranet, running port and vulnerability
scanning to obtain exploitable vulnerabilities. When the
attacker discovers that Tomcat was listening on port 8080,
it will greatly facilitate their intranet infiltrations, for the
reason that Tomcat tends to be started with the command
nt authority system on the Windows host which will
easily cause Tomcat weak password attacks, and thus help
attackers easily obtain the password and hash value to
fully control the server. Next, attackers exploit file upload
vulnerability to upload the war package, which contains all
the malicious files they are going to utilize. Then they check
the web.config file, which configures all the necessary
items to run the web program. Afterward, attackers upload
the explurer.exe program, which includes attacks utilizing
system vulnerabilities, and then perform local overflow
privilege escalation. Next, the hackers remotely log in to the

web server, download the Trojan on the remote server, and
run it locally. At last, they scan the designated port on the
internal network, save the internal network port situation,
and exit the server.

Basically, this timeline is similar to a sequence, and they
can be shown through analyzing the relationship between
system logs and user operation history recorded in the
host history file. In this ”sequence”, some points (i.e. trojan
horse) can be anomalous. In that case, we can detect that
attack as soon as we find the abnormal points.

However, the well-designed attacks present two key
challenges to modern cybersecurity:

More vulnerabilities. The increasingly sophisticated
works have brought about more bugs and vulnerabilities,
making it hard to maintain the system and detect attacks.
For example, office vulnerabilities are still the favorite vul-
nerabilities of most APT organizations, such as Microsoft
Office remote memory corruption vulnerability and Office
document attacks that exploit browser zero-day vulnerabil-
ities. That is because office computers are used a lot, which
are the best extranet entries and have the most direct effects.

Long duration. APT attacks have strong continuity. Fig.
1 is just the small fraction of the entire compaign. After long-
term preparation and planning, attackers usually lurk in the
target network for months or even years. Through repeated
infiltrations, the attack methods and paths are continuously
improved and launched.

Nonetheless, as the timeline shows, many attacks ac-
tually have their potential patterns though seem signifi-
cantly sophisticated. Therefore, their routines can be many
sequences through the timeline. In other words, by learning
and modeling these ”fixed paths” of malicious programs
involved in this campaign as much as possible, we can
detect the attack sequences and master attack phases of
intruders. In the next section, we will discuss our approach
based on the previous problems. Besides, we formulate the
design goals as follows. Note that we assume DeepAG itself
is not attacked, and the data is not tampered by malicious
user to confuse the model.

Accurate prediction. To guarantee the effectiveness of
the prevention, DeepAG should detect the threats with high
accuracy and in a real-time manner.

Adapting new patterns. To overcome the insufficient
learning, DeepAG should learn new patterns and achieve
good performance when processing unexpected logs.

Graph construction. A single-step prediction is not
enough to capture the relationships of attack phases. To
obtain more strategies for proactive prevention intuitively,
DeepAG should visualize the dependencies into a graph.

3 SYSTEM MODEL

Though the multi-step attacks are highly stealthy and com-
plicated, we still find them through analyzing system logs.
Inspired by that, we study attack phases from system logs
and extract the log templates. Fig. 2 illustrates a high-level
overview of DeepAG, which is divided into five parts: text
representation, training stage, detection stage, prediction
stage, and graph construction. First, to represent the logs,
we extract the log templates and then convert them respec-
tively into indexes and vectors. In the training stage, we
vectorize the logs to obtain several log vector sequences
and input these sequences into the transformer to train

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 18,2022 at 15:35:47 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3143551, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX XXXX 4

logN

...

log3

log2

log1

Text representation

Transformer
Model

softmax

online update

Bi-directional

Model

Encoder

block

Detection stage

Prediction stage

Training stage

Forward-

LSTM

xh+1

yh+1

zh+1

Forward-

LSTM

...

Forward-

LSTM

xh+2

zh+2

x2h+1 x2h xh+2

y2h+1 y2h yh+2

z2h+1 z2 zh

..
.

...

...

...

log sequence 1

log sequence 2

log sequence j

h steps

reverse

yh+2

Word
Embedding

Set

OOV Word
Processor

similar

Encoder 

block

Encoder
block

Encoder
block

Encoder
block

..
.

Identify

..
.

..
.

Forward-

LSTM

Detect Visualize

ATTACK!

Log vector

sequences
Graph construction

Log index 

sequences

isolated executionconcurrent execution

loop structure

...

Log

indexes 

extraction

1

2

3

4

5

x1 x2 xh

y1 y2 yh

z1 z2 zh

..
.

...

...

...

index sequence 1

index sequence 2

index sequence i

Backward-

LSTM

...
Predict

New entries

reverse ...

reverse ...

online update online update

..
.

Fig. 2: An overview of DeepAG: (1) Text representation: convert logs to log vectors and log indexes respectively; (2)
Training stage: train the transformer model and bi-directional model utilizing log vector sequences and log index sequences
respectively; (3) Detection stage: leverage the transformer model to detect if there are attacks; (4) Prediction stage: utilize
bi-directional model to predict the paths if there are attacks; (5) Graph construction: visualize the attack paths recorded in
the logs using log indexes sequences

them for APT sequence detection. Moreover, we feed the bi-
directional model with a history of recent index sequences
and regard the next index following the history as the
output. The detection and prediction stages aim to judge the
APT sequences and get predicted attack phases and their
probability distributions through the bi-directional model.
Upon constructing an attack graph, DeepAG offers an ap-
proach related to conditional probabilities for the graph
generation.

3.1 Preliminaries
Here, we explain the preliminaries and concepts used in
DeepAG.

System logs. System logs are the valuable resource and
tool to analyze the attack strategies of intruders as they
intuitively reflect the activities of systems. They actually
encode execution paths ordered by timestamps, which help
find a suspicious activity before a major incident occurs.

Log sequence. We utilize the log sequence which is
comprised of several continuous log sentences to make the
detection and prediction. That is because sequence can help
users analyze the correlations of behaviors of intruders,
especially when the targets of intruders are not one-hit,
which means they tend to spy in the systems to steal the
key information and leave anomaly records. Therefore, it
can help find the abnormal user behavior sequences as well
as show the abnormal points more intuitively.

Transformer model. Transformer model is the state-of-
the-art technology in the fields of NLP, utilizing hierarchi-
cal encoders and decoders with attention-based structure.
Therefore, it models global dependencies between input
and output instead of only depending on sequential rela-
tionships. Moreover, it highly facilitates parallel input pro-
cessing, which can be well applied for parallel computing

of GPU and thus improve time efficiency. In that case, It can
help DeepAG greatly reduce the running time of dealing
with the high-dimensional semantic vectors.

LSTM model. LSTM model is the recurrent neural net-
work capable of learning long-term dependencies among
sequences. It has achieved success in various tasks such
as machine translation, sentiment analysis, and medical
self-diagnosis, as it can learn the intricate patterns and be
equipped with the sequential nature. The recorded events in
the system log tend to be sequential, therefore, we employ
the LSTM model to learn the temporal relationships of log
sequences and make predictions.

Bi-directional prediction. In the prediction of every
step, there may be multiple results with different proba-
bilities caused by possible forks (i.e. concurrency) or insuf-
ficient learning. In order to enhance the reliability of every
prediction, we propose the bi-directional model including
two LSTMs to validate events from both directions. They
are respectively trained by forward logs that contain log
sequences in the sequential execution and backward logs of
reversed log sequences. In the end, for every new entry,
after getting the predictions for next time step t from
forward LSTM, we further make h-steps predictions based
on forward LSTM and obtain several sequences with length
of h. Then we reverse these sequences and input them to
backward LSTM to get the backward predictions for time
step t. Finally, we integrate the predictions of time step t
from two directions to make reliable and comprehensive
predictions.

Concurrent events. The orders among log sequences
provide significant information for the relationships of dif-
ferent attacks, and there might be the log messages with
interactive relationships. Concurrent events are several dif-
ferent threads or concurrently running tasks.
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Attack graph. Attack graph is an intuitive framework
to demonstrate the possible exploited vulnerabilities and
attack paths for analysts. It can model the non-linear de-
pendencies including the isolated execution, fork caused by
concurrency, and loop structures among system logs.

3.2 Text representation.

As shown in fig. 2, we first convert logs to indexes and
vectors. As for log indexes, some logs include an ”iden-
tifier field”, which is the numerical form and represent a
certain event. For example, HDFS log and OpenStack log
can be grouped into different sessions by the block id and
instance id respectively. Therefore, we extarct them as log
indexes through log indexes extraction in fig. 2. For exam-
ple, as fig. 3 shows, the log sequence [log1, log2, ..., logh]
can be extracted as index sequence [x1, x2, ..., xh]; and the
log sequence [logh+1, logh+2, ..., log2h] can be extracted as
index sequence [y1, y2, ..., yh] and so on and forth.

x1 x2 ... xh

y1 y2 ... yh

..
.

index sequence 1

index sequence 2

log1 log2 ... logh

log(h+1) log(h+2) ... log2h

Log

indexes

extraction

Fig. 3: Extracting log indexes

To vectorize the log sentences, we construct the log-
specific word embedding set through the information ex-
tracted from logs, and deal with OOV words as well. Dur-
ing the experiments, we extract synonyms, antonyms, and
relation triples. Synonyms and antonyms represent lexical
information, while relation triples represent relationship
information. With the set of vector representation of syn-
onyms and antonyms corresponding to the target word, we
define the word vector according to the distance between
the tatget word and these synonyms and antonyms. In
particular, it should be as close as possible to its synonyms
and as far away as possible from its antonyms. Inspired
by FastText [24] which points out that vector of a word
are often similar to the average vectors of its surrounding
words, theoretically, if we have one or more examples of
surrounding contexts for the OOV words, then it is con-
ceivable to infer a vector for the target word. Therefore,
we utilize surrounding words to predict the target word.
Specifically, we apply relation triples (h, r, wi), in which h
is a certain surrounding word, wi the target words, and
r different association relationships with wi. If the triples
are factual information, then (h + r ≈ wi), meaning the
corresponding vector of h + r is closer to wi. Inspired by
Log2Vec [16], the objective function is presented as follows,
which combines lexical word embeddings and semantic
word embeddings. C refers to the corpus used for training,
while α and β are constants.

V =

|C|∑
n=1

lg p(wi|wi+c
i−c) + α

∑
r∈Rwi

lg p(wi|h+ r)

+β(
∑

u∈SY Nwi

lg p(wi|u)−
∑

u∈ANTwi

lg p(wi|u))
(1)

In the end, we represent the words in the log as em-
beddings, and input the log to the transformer encoder
block. Thus, it can output the vector representation of the
log. For example, as fig. 4 shows, after removing variables
of log1, we convert every word in log1, such as INFO,
AsyncDispatcher, and so on, to embeddings according to
word embedding set. At last, we input these embeddings
to transformer encoder block and obtain the k-dimensional
vector representation of log1. To detect the attacks in the
sequence, we input the vector representations of sequence
[log1, log2, ..., logh] to transformer model and get its final
representation for training and detection.

2015-10-17 15:40:50,072 INFO [AsyncDispatcher event handler]

org.apache.hadoop.mapreduce.v2.app.job.impl.TaskAttemptImpl:

attempt_1445062781478_0011_m_000001_0 TaskAttempt Transitioned from

RUNNING to SUCCESS_CONTAINER_CLEANUP

INFO AsyncDispatcher event handler org apache hadoop mapreduce ...

log1:

log1:

Remove variables

Encoder 

block

n1 n2 ... nkvector representation of log1:

Word Embedding Set & OOV

Fig. 4: Removing variables of logs

3.3 Training stage
To train the transformer model used to detect APT se-
quences, we process the vector sequences of continuous
log sentences with encoders, and thus get log sequence
representations that are used for binary classification. On
the other hand, to train the bi-directional model used to
predict attack phases, we train two LSTMs with the index
sequences. One is the forward LSTM trained in the sequen-
tial order, and the other is the backward LSTM trained in the
reversal order. In the end, we can obtain two independent
LSTM models. Next, we introduce transformer and bi-
directional model respectively.

Transformer model. Transformer model [23] is the state
of art in Natural Language Processing (NLP) and can
process vectors in parallel, thus making full use of GPU
resources and reducing the running time of dealing with
the high-dimensional data like semantic vectors. It mainly
contains encoders and decoders. The encoders distributedly
represent the word vectors, while the decoders aim at de-
coding the vector representations into sentences. Based on
our scenario that extracts the final vector representation of
a sequence, DeepAG only utilizes the transformer encoding
structure to encode log sequences for attack detections.
Next, we introduce the structure of a transformer encoder
block and demonstrate its design applied in DeepAG.

As is shown in Fig. 5, the transformer encoder block is
comprised of multi-head attention layer and Feed Forward
Network (FFN). First, we input the vector matrix X of a
sequence into the block, where X ∈ Rn∗d, and n is the
sequence length and d is the dimension of every log vector.
In particular, our transformer uses twelve attention heads,
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and we denote the number of attention heads as h. To cal-
culate the attention of every vector Xi (i ∈ {1, 2, 3, ..., n}) in
the sequence, we first create three vectors (query vector Q,
key vector K, and value vector V ) for each vector Xi, and
will use them for h times respectively. We use WQ ∈ Rd∗dq ,
WK ∈ Rd∗dk , WV ∈ Rd∗dv to represent parameter matrices,
and dq , dk, dv are the dimensions of query, key, and value
vectors. These vectors are computed by multiplying X by
three matrices as follows.

Q Vdq dk dv

head1 head2 headh
......

d d d

log1 vector ...log2 vector logi vector logn vector...

concatenate

log representation

m
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Fig. 5: Design of transformer encoder block

Q =X ∗WQ

K =X ∗WK

V =X ∗WV

(2)

For vector Xi (i ∈ {1, 2, 3, ..., n}), we then use Xj (j 6= i)
in the sequence to score Xi through the dot product of K
and Q, which determines the degree of importance of Xi.
Moreover, we represent the score with Zi as follows.

Zi =Qi ∗KT (3)

To stabilize the gradient, we divide Zi by
√
dk and

normalize all scores with softmax function. Due to the
multi-headed mechanism, we have multiple sets of the
query, key, and value weight matrices. For hth attention
head, we multiply zhi by Vh. , so we concatenate these heads
and multiply them with WO as the output of the multi-
head attention layer, where WO is a trainable parameter for
concatenation operation. headh can be obtained as follows,
where Qih represents ith for hth Q, and KT

h the hth K.

headh =softmax(
Qih ∗KT

h√
dk

) ∗ Vh (4)

After multi-head attention layer, we pass the output
through the feed-forward neural network, which is a com-
bination of two linear layers using the ReLU activation
function. This network is shared at different time steps
of each layer but is independent at different layers. The
dimension of its hidden layers is dff , while the input and
output are of d dimension. The following is the function and

W1,W2, b1, b2 are trainable parameters in the feed-forward
network layer.

Fi =max(0, ziW1 + b1)W2 + b2 (5)

Therefore, the log sequence representations are finally
output after the transformer encoder blocks. For example,
for a sequence comprised of log sentences {l1, l2, ..., lm},
we obtain the sequence of log sentence representations
RL = {Rl1, Rl2, ..., Rlm}, where Rlm is the m-th log sen-
tence representation. In the end, with the average pooling
layer, we take the average of RL as final log sequence
representation for classification.

Bi-directional LSTM model. LSTM is an effective RNN
capable of learning long-term dependencies [25]. Specifi-
cally, designed to overcome the vanishing gradient problem,
it maintains a constant error, and thus can continue learning
over numerous time steps and backpropagate through time
and layers. LSTM has been proven a practical and accurate
model in various cases when dealing with classification [26].
The recorded events in the system log tend to be sequential,
therefore, we employ LSTM for feature learning and the
attack events predicting. Fig. 6 demonstrates the structure
of an LSTM block. We take the first layer as an example, and
the following layers are similar.
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Fig. 6: The first layer of Single LSTM Block

The block processes the input one by one. It passes the
previous hidden state Hk

i (i = t−h, t− (h−1),…, t−1, k =
1, 2,…, n) to the next step of the sequence. The hidden
state acts as the memory of the neural network, holding
information of previous data that the network has seen
before. Information is added or removed to the cell state
Ck

i (i = t − h, t − (h − 1),…, t − 1, k = 1, 2,…, n) that
transfers relative information down the sequence chain via
gates. The gates are different neural networks learning what
information will be kept or forgotten on the cell state during
training. There are three types of gates: input gate, forget
gate, and output gate. In short, input gate determines what
information is relevant to add from the current step, and
forget gate decides what is relevant to keep from prior steps.
Besides, the output gate determines what next hidden state
should be. The recurrent memory arrays for the three gates
are as follows.
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ft =σ(Wf ∗ [Ht−1, xt] + bf )

it =σ(Wi ∗ [Ht−1, xt] + bi)

C′t =tanh(WC ∗ [Ht−1, xt] + bC)

Ct =ft ∗ Ct−1 + it ∗ C′t

ot =σ(Wo ∗ [Ht−1, xt] + bo)

Ht =ot ∗ tanh(Ct)

(6)

Stacking LSTM blocks will create a multi-layer and feed-
forward network at each time step, which means the input
to a layer is the output of the previous layer. Therefore,
stacking mechanisms automatically create different time
scales at different temporal hierarchy, greatly helping learn
the temporal order of system logs. As demonstrated in fig.
7, DeepAG stacks blocks and applies the hidden layer, fol-
lowed by a softmax which leverages a standard multinomial
logistic function to output the probability distribution of
predicted indexes. For simplicity, we omit an input layer
and an output layer constructed by standard encoding-
decoding schemes. In this paper, for example, we use struc-
tured data (i.e. log indexes) extracted from unstructured log
entries to train the LSTM models. Given a sequence of log
indexes, the LSTM model is trained to output the proba-
bility distributions P={xt = k | xt−h, xt−(h−1), ..., xt−1}.
Here, h refers to the length of input sequence and k the
next log indexes.
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Fig. 7: LSTM model of DeepAG

The word order is a critical factor for modeling sentences
because it determines the logic of sentences, providing use-
ful information. However, single LSTM is uni-directional,
which can only encode the sentence from front to back
or from back to front. From that perspective, BiLSTM is
proposed to learn from two directions and better capture the
two-way information dependence. BiLSTM consists of two
LSTMs, which learn sentence information from front to back
and from back to front respectively. It performs single-step
prediction on the same input sequence and concatenates the
output of last hidden layers of two LSTMs for classification.
Taking the log-based attack prediction studied in this paper
as an example, fig. 8 shows the application of BiLSTM in this
scenario. Assuming that the log sequence is {x1, x2, x3}, the
forward LSTM sequentially inputs x1, x2, x3 to obtain three
vectors {hf0, hf1, hf2}. The backward LSTM sequentially
inputs x3, x2, x1 to get three vectors {hb0, hb1, hb2}. It then
concatenates the forward and backward hidden vectors

to obtain [hf2, hb2], which contains all the forward and
backward information. Finally, It sends the spliced vector
to softmax layer for prediction.
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x3 x1
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Fig. 8: Application of BiLSTM

However, traditional BiLSTM makes single-time-step
predictions for the same input sequence which provides
limited information. To collect more information for more
reliable predictions, we propose bi-directional model of
DeepAG. It generates multiple sequences to provide more
information for reliable predictions based on forward and
backward LSTMs. Our design is shown in fig. 9. For each
log sequence with a length of h in the training set, we train
the forward LSTM and backward LSTM respectively with
forward and backward training data sets.

forward-LSTM

Blocks Label=Xt 

 

backward-LSTM

Blocks
Input: {Xt', Xt'-1, ..., Xt'-(h-1)}

 

Label=Xt'-h 

 

(a) forward LSTM

Input: {Xt-h, Xt-(h-1), ..., Xt-1}

 

(b) backward LSTM

Fig. 9: Bi-directional training models

For example, supposing a small fraction of our data set
for forward LSTM is:

{x1, x6, x3, x5, x10, x19, x15, x2, x26, x1, x5, x8} (7)

Given a window size h = 10, the input sequence and
output label for forward LSTM would be:

{x1, x6, x3, x5, x10, x19, x15, x2, x26, x1 → x5}

{x6, x3, x5, x10, x19, x15, x2, x26, x1, x5 → x8}
(8)

The process for backward LSTM data set is similar.

3.4 Detection stage.
After vectorizing every word with pre-trained word em-
bedding set, we encode every log sentence through the
encoder blocks and obtain the vector representation. As
fig. 10 shows, vector representations of multiple continuous
log sentences (i.e. [log′1, log

′
2, ..., log

′
h]) form the log vector

sequence. Next, we input the log vector sequence into
transformer model and get final log representation for that
sequence, in order to judge if there are included attacks. In
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case of unseen words in the log sentences, DeepAG gets its
vectors according to the OOV model. With the strategies
of online update and trained OOV processor in the offline
stage with MIMICK [27], DeepAG assigns a new embedding
vector for unseen words when a new word appears in the
online stage, and thus adapts new patterns of capricious
intrusion.
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Fig. 10: Detection framework

3.5 Prediction stage.
DeepAG is able to make online predictions utilizing bi-
directional model. We first feed the forward LSTM with
a new log index sequence. After getting the predicted
log indexes and probability distributions, we regard these
indexes as the starts of multiple branches. For every one of
them, we then make the further predictions for h steps and
store every sequence as a branch of the original one. Then
we reverse every branch and input them to the backward
LSTM and compute the probability of predicted indexes.
Finally, our strategy is to sort the average probabilities of
predicted indexes that appear in the predictions of forward
or backward models and have the probabilities greater than
g, where g is threshold for outputting top few predictions
that have higher probabilities. We regard the probabilities of
indexes that are in the predictions of only one model as 0.
After getting the set of predicted indexes intergrated from
two LSTMs (i.e. forward and backward LSTMs), DeepAG
verifies whether the actual label appears in the set. If not,
the prediction will be regarded as wrong. Besides, DeepAG
can adapt new patterns with the report from analysts for
the wrong prediction.
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Fig. 11: Process of bi-directional prediction

As demonstrated in fig. 11, we first input a new log
index sequence Q = {q1,...,qh} to the forward LSTM and
output the predicted indexes and their probability distribu-
tions, where h is the window size of LSTM. We observe that

most predicted indexes have an extremely low probability
that can even be negligible, for the reason that the attack
patterns are finite and what the softmax layer computes is
the probability distribution among all indexes.

By investigating the probability of predicted indexes
during our experiments, we obtain the following findings:
(1) The probabilities of most indexes in a prediction are
extremely small, most of which have the magnitudes of
only 10−6 or even smaller. (2) For our data set which
contains 29 classes of attack phases, the number of predicted
indexes with the probability greater than 0.1 is usually
within 4. (3) If the prediction includes only one index with
the probability greater than 0.1, its probability is generally
greater than 0.9. (4) If there are more than 3 indexes having
the probabilities greater than 0.1 in a prediction, then their
probabilities are often from around 0.3 to 0.5.

Therefore, we set up the threshold for predic-
tion as 0.1, in order to avoid the noise of other
predicted indexes with negligible probabilities, and
thus reduce the training burden. We then obtain the
forwardindexes={xf1, xf2, ..., xfn}, which includes the in-
dexes that are predicted from Q and have proba-
bilities greater than g and wait for being verified
combining backward LSTM. Their probability distri-
bution in this step predicted by forward LSTM is
forwardprobs={pf1, pf2, ..., pfn}. Then we append every
index in the forwardindexes to Q and make a further
prediction with the forward LSTM for h steps.

From fig. 11, after h-step prediction of for-
ward LSTM, we obtain the log index sequences
reverseindexes = {[x1, x2, ..., xh], [x′1, x′2, ..., x′h]} and their
probabilities reverseprobs = {[p1, p2, ..., ph], [p′1, p′2, ..., p′h]}
for backward LSTM. With these new index sequences
reverseindex of length h, we reverse each of them which
is fed to backward LSTM model later. Then we get a set
of predicted indexs backwardindexes={xb1, xb2, ..., xbn}
and their probabilities backwardprobs={pb1, pb2, ..., pbn}
. In the end, after integrating the forwardindexes and
backwardindexes, we compute the average probability
avg of each index. The process of predicting next indexes
forwardindexes and probabilities forwardprobs, and
obtaining final indexes integrated from forward and
backward LSTMs is respectively shown in algorithm 1 and
algorithm 2.

3.6 Graph construction.
In order to present the possible paths of a attack, we need
to perform a high-level abstraction. Inspired by Deeplog
[19] which leverages LSTM to predict log key based on
log sequence, and proposes the output actually encodes
the underlying execution path, we build the attack graph
through bi-directional model where the predictions are in
the streaming form.

To work with a log sequence that contains multiple tasks
or concurrent threads in one task, Deeplog proposes that the
main challenge is to find a divergence point to figure out
whether the multi-key prediction output is caused by either
concurrency in the same task or the start of a different task.
Deeplog observes that if the divergence point is caused by
concurrency in the same task, a common pattern is that keys
with the highest probabilities in the prediction output will
appear one after another, and the certainty (measured by
higher probabilities for a smaller number of keys) for the
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Algorithm 1: Obtaining backward sequences
Input: Original index sequence Q, window size h,

an empty list reverseindexes and an empty
list reverseprobs

Output: A list reverse including new index
sequences reverseindexes and their
probabilities reverseprobs

1 Predicting next indexes forwardindexes and
probabilities forwardprobs;

2 for index ∈ forwardindexes do
3 Q′ = deepcopy(Q);
4 Q′.append(index);
5 new sequence.append(Q′)

6 for sequence ∈ new sequence do
7 Further predicting h steps based on forward

LSTM and getting several branches branchindex
and probabilities branchprob;

8 reverseindexes.append(branchindex);
9 reverseprobs.append(branchprob);

10 reverse.append(reverseindexes, reverseprobs);
11 return reverse;

following predictions will increase, as keys for some of the
concurrent threads have already appeared. The prediction
will eventually become certain after all keys from concur-
rent threads are included in the history sequence. Thus, it
has a parameter g, denoting the number of top g log keys
in the predicted output probability distribution function to
be considered.

However, Deeplog sets g as the maximum number of
branches at all divergence points from the workflows of all
tasks, which is compromised by two shortages. On the one
hand, it is difficult for us to know the maximum number
of branches in advance, because the number of branches
may change as the model runs on different sequences. For
example, if this time we set g as known number of branches
after running the model, then next time g may change due
to the changing number of branches. Therefore, it is hard to
determine an optimal g. On the other hand, in fact, it is not
practical because the prediction output of Deeplog includes
probabilities of all 29 classes, in which most keys account
for probabilities that are negligible but not zero. From that
perspective, Deeplog needs to set g as 29, and thus the
noise caused by negligible keys could make judgment of
concurrency and isolated tasks so difficult.

To overcome the difficulty to find an optimal g, we set
the probability threshold for prediction output, effectively
limiting the number of log keys to be considered. We also
compare and analyze the impact of different values of
probability threshold in Section V.

In the phase of judging concurrency, we utilize the bi-
directional model which outputs probability distribution.
LSTM tends to make increasingly accurate predictions with
the augment of window size, while also brings about com-
plicated computing with the increasing window size due to
its intricate inner structure. Therefore, we should determine
a proper window size, which can avoid resulting in the
segments shared by multiple sequences. For example, the
segment {x7 → x3} is shared by {x8 → x7 → x3 → x6}
and {x2 → x7 → x3 → x9}, may leading to the inaccurate

Algorithm 2: Obtaining final indexes integrated
from forward and backward LSTMs

Input: Indexes predicted by forward LSTM
forwardindexes, probability distribution
forwardprobs, a list of index sequences
reverseindexes and a list of their probabilities
reverseprobs, an empty list reverse, an
empty set finalindexes, an empty dictionary
of final indexes and their average
probabilities indexesavg .

Output: a dictionary of final indexes and their
average probabilities indexesavg

1 finalindexes.update(forwardindexes) ;
2 forward dict = dict((x, y) for x, y ∈

zip(forwardindexes, forwardprobs);
3 middle = [];
4 for seq ∈ reverseindex do
5 seq.reverse();
6 Further predicting next indexes

backwardindexes={x1,x2,…,xn} and their
probabilities backwardprobs = {p1,p2,…,pn}
based on seq through backward LSTM;

7 final indexes.update(backwardindexes);
8 middle.append(dict((x, y) for x, y ∈

zip(backwardindexes, backwardprobs)));

9 Constructing a dictionary backward dict that
includes each index in backwardindexes and their
computed conditional probability based on
forwardprobs, reverseprob and middle;

10 for index ∈ finalindexes do
11 Computing its average probability avg based on

forward dict and backward dict;
12 indexesavg[index] = avg;

13 return indexesavg ;

prediction when the window size of LSTM is two.
We define the concurrent relationships among various

indexes by their conditional probabilities. Essentially, for a
branch point that the next prediction contains more than
one event, we should judge whether some of them are
concurrent executions or not. We assume that the number
of indexes in a prediction is w (w > 1). As concurrency
means that various tasks are executed by multiple threads,
they can appear at least in different orders of factorial w.
Besides, due to the linear input form of the LSTM model in
our scenario, we should make further predictions of at least
w steps for judging concurrency.

We have the following six findings for the judgment of
concurrent index: (1) The concurrent indexes belonging to
the same sequence must appear in every step of prediction
respectively. For example, supposing there are four concur-
rent indexes, the kinds of orders in that sequence will be at
least 24 (factorial 4). (2) When the predecessor of index is
the same as itself, its probability in the prediction of that
step should be regarded as 0 for computing conditional
probability. (3) Its conditional probability computed in the
next prediction should not be smaller than that in the
current step. (4) Its predecessor in the previous predic-
tion must be also judged as a concurrent index. (5) The
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number of indexes filtered after (1), (2), (3), and (4) must
be at least two. (6) These events conforming to the above
five steps need converge to the same event. Therefore, if
there are branches, we should make a further prediction
from the branches respectively combining the original in-
dex sequence. We define initialindexes as a list of indexes
appearing in both predictions and their probabilities are the
lists of initialprobs. Next, we illustrate the process in detail,
and the approach to judging concurrency is demonstrated
as algorithm 3.

Algorithm 3: Concurrent indexes judgment
Input: Original index sequence Q
Output: A list of concurrent indexes

concurrentindexes
1 step = 0;
2 while initialindexes.length > 1 and
initialindexes.length > step do

3 Making one more prediction as nextindexes;
4 for index ∈ nextindexes do
5 if index /∈ initialindexes then
6 Remove(index) ;
7 Remove(index.edges);

8 else
9 Calculating conditional probability

probindex;
10 if probindex < previous probindex then
11 initialindexes.remove(index);
12 step = 0;
13 break;

14 else
15 step += 1;

16 concurrentindexes = initialindexes;
17 return concurrentindexes;

Fig. 12 shows the graph constructed according to a com-
plicated circumstance caused by concurrency, supposing the
window size of bi-directional LSTM model is three. In fig. 12
(a), the predicted probability distribution Probd of event se-
quence {x14 → x8 → x7} is {x26 : 0.3, x1 : 0.4, x3 : 0.2, x4 :
0.1}, which probably contains multiple indexes. Therefore,
it is necessary to judge concurrency. We regard Probd as the
first prediction. As aforementioned, we need at least four
further predictions. Therefore, we introduce the following
procedures. At the beginning, we combine the original
index sequence with the index of Probd respectively, to
construct the branches and make the second prediction
shown as fig. 12 (b). At the second-prediction phase, the
index sequence {x8 → x7 → x26} leads to the prediction
{x1 : 0.5, x3 : 0.2, x4 : 0.3}, and {x8 → x7 → x1} results
in the prediction {x3 : 0.4, x26 : 0.6}, and {x8 → x7 → x3}
brings about the prediction {x4 : 0.3, x1 : 0.6, x26 : 0.1},
and the index sequence {x8 → x7 → x4} causes the
prediction {x26 : 0.9, x5 : 0.1}. Noting that the index x5
does not show up in the previous prediction, so we remove
the node x5 and its edge {x4 → x5}. Therefore, the indexes
appearing in both two steps are {x26, x1, x3, x4}. In the
second phase, we calculate that their conditional proba-
bilities are respectively {0.5, 0.54, 0.314, 0.375}, all greater

than those in the first phase. So far, we have obtained
the initial concurrent indexes as {x26, x1, x3, x4}. Because
there are four initial indexes, we need to make at least two
more further predictions from the initial indexes. Then we
perform a similar operation and obtain the graph in fig. 12
(c). The probabilities of all events except the index x1 and x3
from {x7 → x4 → x26} are 1.0 for the reason that they are
the only indexes in their prediction. Thus, we predict index
sequence {x7 → x4 → x26} and its probability distribution
is {1 : 0.5, 3 : 0.5}. It is noteworthy that the prediction for
a sequence {x7 → x26 → x4} is x7, which does not appear
in the previous prediction. Therefore, we remove the node
x7 and its corresponding edge {x26 → x4 → x7}. Next, we
calculate the conditional probabilities of the initial indexs
as {x26 : 1, x1 : 0.678, x3 : 0.775, x4 : 0}. All probabilities
of initial events have increased except the index x4, which
is 0. Thus, in fig. 12 (d), we strip away the sequences
{x3 → x4 → x1}, {x4 → x26 → x1} and {x4 → x26 → x3},
which are circled with the red line. Then we make one
more prediction and find all the branches converge to the
index x4 as demonstrated in fig. 12 (e). Finally, we know
the concurrent indexes are {x26, x1, x3}, and decide the
index x4 as the convergence point, in which the final graph
constructed is given in fig. 12 (f).
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Fig. 12: Process of construction of graph for concurrent
indexes

4 THEORETICAL ANALYSIS

We compare DeepAG with four state-of-the-art models and
briefly introduce these baselines as follows.
• Deeplog: Deeplog is a deep neural network framework

leveraging LSTM to model a system log as a natural
language sequence, and denoting every log entry as a
index to make the predictions.
• Log2Vec: Log2Vec converts the log to weighted average

of embeddings, and uses LSTM to model the log.
• LogAnomaly: LogAnomaly represents logs as semantic

vectors. It uses an attention-based LSTM model as its
classification algorithm.
• LogRobust: LogRobust is similar to LogAnomaly, de-

noting logs with semantic vectors. Moreover, it models
the logs utilizing an attention-based Bi-LSTM model.
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Specifically, Log2Vec, LogAnomaly, LogRobust,
Deeplog, and DeepAG utilize recurrent layers of LSTM
to process the temporal relationship of logs, and some of
them also leverage self-attention mechanism to strengthen
the ability to focus on more useful information. As
a counterpart, the multi-head attention mechanism in
DeepAG also plays the role in finding key information.
Above all, recurrent layer and attention mechanism are
the core techniques applied in these models. Therefore, we
perform a theoretical analysis for the time complexity of
recurrent layer and attention mechanism among DeepAG
and its baselines respectively in the attack detection and
prediction as shown in table 2, in which n is the sequence
length, while d is the dimension of extracted features.

In terms of detection, DeepAG only has the attention
mechanisms, and it has nd2 complexity less than that of
LogAmomaly and LogRobust. Comparing to Log2Vec, basi-
cally, to represent the semantic information more precisely,
d is larger, which is 32 in DeepAG. However, n is 10 in
our experiments, which is much less than d. Therefore,
it costs the least time in general. On the other hand, for
prediction, both Deeplog and DeepAG only have the recur-
rent layer. Although the time complexity of DeepAG is n
times Deeplog, according to our performance analysis of
prediction in section 5.3, DeepAG improves the accuracy
clearly compared to Deeplog.

TABLE 2: Comparison of time complexity for recurrent layer
and attention mechanism among DeepAG and its baselines,
in terms of detection and prediction. n is the sequence
length, d is the dimension of extracted features.

Time complexity
Sum

Recurrent Attention

Detection

Log2Vec O(nd2) - O(nd2)
LogAnomaly O(nd2) O(n2d) O(nd2+n2d)

LogRobust O(nd2) O(n2d) O(nd2+n2d)
DeepAG - O(n2d) O(n2d)

Prediction
Deeplog O(nd2) - O(nd2)
DeepAG O(n2d2) - O(n2d2)

5 EVALUATION

The operating system in our experiment is macOS 10.15.4
with 32GB memory and 2GHz quad-core Intel Core i5
CPU, and Ubuntu16.04 with 48GB memory and GTX 1080Ti
GPU. We use Pytorch 1.4.0 and Python3.6 to train the
neural network model as a backend. Moreover, we compare
DeepAG with four baselines: Deeplog [19], Log2Vec [16],
LogAnomaly [18], and LogRobust [17], which have been
introduced as section IV. In addition, to investigate the
bi-directional mechanism, we compare the performance of
DeepAG and BiLSTM.

5.1 Experiment setting
5.1.1 Data sets
Since our objective is to detect and predict the attacks
as well as evaluate the performance, which is similar to
anomaly detection, we conduct our experiments on HDFS,
OpenStack, PageRank, and BGL data sets 1, in which the

1. https://github.com/logpai/loghub

abnormal logs are all manully labeled by experts. The
PageRank data set is gained from Hadoop platform.

We group log entries of HDFS and OpenStack into
different sessions respectively by the block ID and instance
ID, which are the identifier fields and extarcted as log
indexes reprensenting events. Besides, we convert every
log in PageRank and BGL data sets to vectors. Particularly,
we process the data sets to make the ratio of positive and
negetive samples close to 1:1. Table 3 summarizes the data
sets we use.

TABLE 3: The statistics of data sets we used

Number of sequences Number of
Training data Test data log indexes

HDFS 16560 7520 29
OpenStack 8460 2820 40
PageRank 215524 71840 No need

BGL 120000 40000 No need

To generate data set for backward prediction, we lever-
age previously attained forward model. First, to avoid the
imbalance of data set for backward prediction, we extract
all the different types of log sequences in training data
for forward prediction, making every log sequence distinct.
Then, for every session (including a log sequence with a
length of h and its label l), we use forward model to predict
log indexes for next h steps and obtain new log sequences
with a length of h. Finally, for every log sequence, we
reverse its order and use l as its label. Moreover, because
a prediction will include most log indexes with extremely
low probabilities which can even be ignored, caused by the
feature of SoftMax layer, we set the probability threshold
of outputting the predicted log indexes as 0.5 to avoid
interference. Besides, sufficient learning of bi-directional
model and great results in the following experiments can
also guarantee the viability of this dataset. Similarly, the test
data set is also obtained from test data of forward prediction
in this way.

5.1.2 Set up
By default, we set the hyperparameters in the experiment as
follows: h = 10, L = 2, g = 0.1, and α = 64. h is the window
size of the LSTM and transformer model. L and α denote
the number of layers of the LSTM and transformer model,
and the number of memory units in a single LSTM block
respectively. Besides, g is the threshold for outputting top
few predictions that have higher probabilities.

5.2 Performance of detection.
Fig. 13 (a) (b) show precision, recall, and F1 score of semantic
information-based models trained and tested on PageRank
and BGL data sets respectively. DeepAG achieves the high-
est performance among the four models with an F1 score
of 99.661% and 99.85% on PageRank and BGL data sets
respectively. LogRobust has the highest precision, but has
the most difference of recall on two data sets, where its recall
on PageRank data set is 0.286% more than that on BGL
data set. Therefore, a large number of exceptions have been
missed, which may bring great challenges to the stability
of software and hardware systems. LogAnomaly has a high
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(a) Performance on PageRank data
set

(b) Performance on BGL data set (c) Performance on PageRank-
based model

(d) Performance on BGL-based
model

Fig. 13: Performance of semantic information-based models

recall, and it also has a great F1 Score of 98.904% and 99.015%
on PageRank and BGL data sets respectively. In addition,
Log2Vec nearly has the lowest precision, recall, and F1 Score
on two data sets among four models.

An advantage of representing logs with their semantic
information is that we can learn the model from one data
set, which is regarded as the source data set, and implement
the experiments on another target data set. Thus, it helps
relieve the problems of insufficient samples. Fig. 13 (c)
(d) show precision, recall, and F1 score of models based
on different source data sets respectively. Here, fig. 13 (c)
shows the performance of models when training model on
PageRank data set and test on BGL data set, while fig. 13
(d) is the presentation of performance of BGL-based model
tested on PageRank data set. We find that DeepAG achieves
better performance in both settings with F1 Score of 76.976%
and 79.463% on PageRank source model and BGL source
model respectively. It has the F1 Score that is over 20% more
than other models with PageRank source model. Moreover,
only DeepAG achieves the recall of over 95%, while other
approaches have the recall around 60%.

Table 4 compares the test time among DeepAG (Trans-
former) and its baselines on PageRank and BGL data sets.
Due to the parallel way of data processing, we notice
that the time comsumed by DeepAG decreases greatly
compared with other baselines when testing data set for
detection, which is only 1.02 and 0.93 seconds. However, all
other models cost 2 times of time more than that of DeepAG.

TABLE 4: Comparison of detection time

Model Log2Vec LogAnomaly LogRobust DeepAG
PageRank 2.54 s 2.8 s 3.1 s 1.02 s

BGL 1.96 s 2.21 s 2.64 s 0.93s

Inspired by LogRobust [17] which pointed out that
log data is usually unstable, specifically meaning that one
or several words are inserted into original logs, or re-
moved from them caused by evolving logging statements
or inaccurate log parsing, we validate the robustness of
transformer model in DeepAG by inserting/removing some
words into/from original log sentences, adding or delet-
ing certain log sentences, and shuffling the orders of log
sentences. In particular, these changes do not significantly
change the semantic meaning of the original ones, thus the
labels are not affected. Finally, we inject certain ratios of
these changed logs into the original data set.

Fig. 14 compares F1 Score of DeepAG and its baselines
on PageRank data set. When the ratio is low, we can notice

Fig. 14: Performance on unstable log data

the performance of all models are similar to the original
performance. However, as the inject ratio increases, only
the performance of Log2Vec declines significantly, which
decreases by about 50% when the inject ratio ranges from
10% to 40%. In contrast, the performances of LogAnomaly,
LogRobust, and DeepAG keep the stable trend though inject
ratio increases. Moreover, DeepAG still achieves the best F1
Score under different inject ratios.

5.3 Performance of prediction.

Fig. 15 demonstrates the number of sequences in the back-
ward data set generated from various thresholds and the
accuracy of bi-directional model, respectively on HDFS and
OpenStack data sets. We find the threshold has almost no
impact on the accuracy, which means the predictions that
have top few probabilities can match most labels. However,
the smaller the threshold is, the more sequences will be
generated, and thus the bigger the backward data set will
be. Specifically, when the threshold turns from 0.1 to 0.7,
the number of sequences generated from HDFS data set
changes from 27882 to 2206, but the accuracy varied neg-
ligibly. However, the smaller threshold will lead to large
data set, making it difficult to adjust parameters for fitting
numerous information. In summary, it is reasonable to set
up 0.5 as the threshold of generating backward data set for
our experiment.

To avoid the impact of noisy indexes that have neglible
probabilities as illustrated in section 3.4, we investigate
the accuracy of Deeplog, backward model, and DeepAG
in matching the predictions on HDFS and OpenStack data
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Fig. 15: Performance of different thresholds

sets when setting different thresholds for LSTMs, shown in
fig. 16 (a). In particular, Deeplog is the forward model. On
HDFS data set, when comparing Deeplog and backward
model, we find that the backward predictions match the
predicted index for 77.8% of sequences when threshold is
0.1, and 70.223%, 65.28%, and 61.92% of seuquences with
the thresholds of 0.2, 0.3, 0.4, which are greatly near to
Deeplog that has the accuracy of 77.852%, 71.588%, 64.877%,
and 63.087% in the counterparts. Therefore, it corroborates
the viability of our approach to backward dataset process-
ing.

Besides, DeepAG achieves the accuracy of 89.018% with
the threshold of 0.1 and improves Deeplog by 11.166%. Mre-
over, 84.794%, 79.303% and 75.396% of labels are matched
by DeepAG with the thresholds of 0.2, 0.3, 0.4 respectively,
which are higher than Deeplog by 6.942%, 7.715%, and
10.519% separately. We also compare DeepAG and BiLSTM,
both of which have the mechanism of forward and back-
ward LSTM shown in fig. 16 (a). When matching the labels
under the setting of threshold of 0.1, the accuracy of DeepAG
is 10.271% higher than BiLSTM, and it improves BiLSTM
by 14.722%, 12.86%, and 12.756% with the thresholds of 0.2,
0.3, 0.4 respectively.

Fig. 16 (b) compares the precision, recall, and F1 Score
between Deeplog, BiLSTM, and DeepAG. It is clear that
DeepAG achieves better performance than Deeplog, where
DeepAG achieves F1 Score of 86.902% while F1 Score of
Deeplog is 82.783%. When compared to BiLSTM that has the
similar structure, we observe that both DeepAG and BiLSTM
nearly achieve the recall of 100%. However, the precision of
DeepAG is 5.604% higher than that of BiLSTM and DeepAG
achieves better F1 Score (86.907%). When investigating the
results on OpenStack data set, it conveys the similar trend.

5.4 Performance of adapting new patterns

5.4.1 Implementation of OOV word processor
To strengthen the transformer model in DeepAG, we intro-
duce OOV word processor, which can distributedly repre-
sent the unexpected words at runtime.

First, we extract several data from original data set rang-
ing from 10% to 90%, in order to train the word embeddings

(a) Performance of prediction in DeepAG

(b) Performance on two data sets

Fig. 16: Evaluation for index-based models

and use the remaining logs to test the word representations.
With training data sets, fig. 17 (a) shows the distribution
of OOV words of the test data sets. In the HDFS data set,
the percentage of OOV words in the test data set ranges
from 0.183 to 0.28, while 0.159 to 0.21 in the PageRank
data set. Then we randomly select a word in each log and
change one of the letters to make the word OOV. Thus,
each piece of the log contains OOV words. Next, we test
the similarity (Cosine Similarity) between the changed log
and the original log. Fig. 17 (a) also shows the similarity
of changed logs with original logs. With different sizes
of training data set, we obtain various similarities when
evaluating the test data set. For the PageRank and BGL
data sets, we observe that the both of their original logs
achieve more than 0.9 similarities with the changed logs,
which verifies the effectiveness of the OOV word processor.

5.4.2 Implementation of online update
Online update is the mechanism of adapting new patterns
for bi-directional model in DeepAG. When the model makes
predictions that are false positive, the users would incre-
mentally update the model.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 18,2022 at 15:35:47 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3143551, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX XXXX 14

(a) OOV word processor (b) Precision of online update (c) Recall of online update (d) F1 Score of online update

Fig. 17: Performance of adapting new attack patterns

First, we extract several data from original data set
ranging from 10% to 90% to train the bi-directional model,
and the rest is for testing. We investigate the performance
of bi-directional prediction without an online update. Then,
after examining the false positive predictions, we add them
to the training data set and learn a new pattern. Finally, we
compare the performance of models built with or without
the mechanism of online update, which are shown in fig.
17 (b) (c) (d). We note that online updating have improved
the performance of model significantly. On the HDFS data
set, the F1 Score without online update is from about 58%
to 73% , and the precision is even less than 50%. However,
after adding false positive predictions, the precision is higher
than 95% and F1 Score achieves about 96.3% to 99.8%,
which affirms the robustness of DeepAG. Similarly, on the
OpenStack data set, the precision, recall, and F1 Score of
DeepAG also improve a lot after being updated online ,
where the F1 Score increases by around 20%.

5.5 Evaluation for parameters

To figure out the influence of different parameters, we
compare F1 score of DeepAG under different window sizes
and number of layers respectively shown in fig. 18 (a) (b).
According to fig. 18 (a), we find that increasing h or a
number of layers leads to better performance for prediction,
which could be caused by more sufficient learning. For
example, when window size is 6, F1 Score of DeepAG on
HDFS data set is 87.8%, which is improved to 89.018% when
the window size is 10; while for detection, window size
has neglible influence on DeepAG, and its F1 Score always
keeps at around 99.5%. Having been informed that the
performance of models can be influenced by changing h, it
is worthy to seek proper patterns of h, in order to get a more
satisfactory prediction. It is important because blindly rais-
ing h will bring indispensably sophisticated inner comput-
ing of network that rather weakens the real-time nature of
DeepAG. However, DeepAG achieves the great performance
under different parameter settings, which demonstrates that
our model is robust.

In addition, fig. 18 (b) demonstrates the performance of
models under different number of layers. In general, we
observe that DeepAG is not very sensitive to the change of
number of layers, and it achieves great performance even
when set up to 1 layer, which means DeepAG can be easily
deployed and used. That is because a greater number of
layers lead to a longer time for training and prediction and
more difficulty to fit the model.

(a) window size

(b) the number of layers

Fig. 18: F1 Score of changing parameters

5.6 Attack graph construction.

We simulate the concurrent situation utilizing the module
threading in Python. By instantiating multiple objects of
Thread that represent threads for concurrent programming
and recording the execution paths in the HDFS logs, we
determine the concurrent log indexes and obtain some
index sequences. Through processing the data set, we ob-
tain 14288 index sequences which include 1600 kinds of
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Fig. 19: Verification for part of attack graph

sequences composed of two concurrent indexes, 1000 kinds
of sequences comprising three concurrent indexes, and 478
kinds of sequences containing four concurrent indexes. We
retrain the bi-directional model and make cross validations.
Table 5 shows the performance of retrained model.

TABLE 5: The performance of retrained model

Threshold 0.1 0.2 0.3 0.4
Accuracy 89.84% 83.2% 80.946% 73.171%

Fig. 19 (1) demonstrates a part of the existing attack
graph constructed from the data set introduced above (not-
ing that the ① and ② on the arrows denote the loop
times of the particular structure). We use the execution
path in the blue circle for verification. First, we make the
prediction, shown in Fig. 19 (2). Fed with the sequence
{1 → 3 → 2 → 16 → 9 → 5 → 8 → 10 → 12 → 7},
bi-directional model outputs two indexes {16, 6}. We make
one more prediction and know that the conditional prob-
abilities of 16 and 6 are both greater than that in the
previous prediction. Besides, we find the two sequences are
converged to the same index in the further prediction. Then,
by construction, we can obtain the graph with concurrent
structure as shown in fig. 19 (3). Finally, by verification,
we find it matches the real execution.

6 RELATED WORK

6.1 Log-based detection
Log-based detection has always been emphasized by re-
searchers, especially in the fields of cybersecurity, as it
actually encodes the paths of intruders or any anomalies,
which helps reveal their strategies.

Most researchers represent system logs with extracted
log templates. In order to achieve the goal of automatic
log parsing, academia and industry have proposed many
methods, including frequent pattern mining [28], calcula-
tion of the longest common subsequence (Spell [29]), and
parse tree (Drain [30]), etc. Besides, after obtaining log
templates, some researchers convert logs to indexes or

vectors, thus reaching an advancement of attack detection.
Typically, Deeplog [19] converts log templates into indexes.
Some researches [16] [18] utilize the log-specific semantic
information to represent logs.

With standard log representations, deep learning is
widely used by many researchers are able to model the
behaviors of attackers and achieve the prediction and
detection [31] [32]. From that perspective, Deeplog [19],
LogRobust [17], and LogAnomaly [18] utilize LSTM to learn
normal system behaviors and report all strange actions.
Log2Vec [33] divides the log entries into five attributes and
devises fine rules to define relationships among logs within
a host, and then vectorizes user’s operations, enabling a
direct comparison of their similarities to find anomalies.
Other approaches [34] [35] focus on analyzing user’s logon
operations to detect anomalous ones, which are capable of
holding the information of interactive relationship among
hosts.

6.2 Text vectorization

Text vectorization means that mapping the texts into vectors
in a certain corpus. Essentially, it focuses on the extraction
and convertion of word vectors, which avoids the loss of
semantic information.

N-Gram [36] model is a vectorization method that esti-
mates the probability from relative frequency counts, aim-
ing to predict the next most likely word given a string of
words. Another vectorization approach is word embedding
[37] [38], including the Continuous Bag of Words(CBOW)
model and skip-gram, which are distributed representations
of text, based on the prediction through a neural network. It
proposes that the semantic information of a word is jointly
affected by the surrounding vocabularies. Meng et al. [16]
capture words in logs more precisely through defining some
pairs of synonyms and antonyms. In that case, domain-
specific knowledge improves the performance, especially
in the highly-targeted scenes. In order to express semantic
information more effectively, many pre-trained word vec-
tor models have been proposed, such as GPT3 [39], and
other word representations based on global word frequency
statistics [40]. Google and Microsoft use a large number
of data sets, corpora of various languages, and models
with massive parameters to train word vectors that can
be directly used by NLP tasks. FastText [24], a variant of
Word2Vec published by Facebook, can train word vectors
combining n-gram substrings of the full token. Therefore,
for languages where such substrings are morphemes hint-
ing at meaning, vectors can be synthesized for OOV words,
better-than-random at some tasks especially if the OOV
words are variants or misspellings of in-vocabulary words.

6.3 Graph construction

A majority of current work is transforming the behavioral
features of users into sequences or graphs, which greatly
help the intuitive analysis.

There have been many well-known open-source frame-
work Y i et al. [41] used to automatically generate attack
graphs like MulVAL, TVA, Attack Graph Toolkit, NetSPA
and so on. However, their default modeling has some un-
avoidable shortcomings. For example, MulVAL only gives
an attack path instead of generating a complete attack
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graph. In addition, their complexity in the worst case may
be exponential. Xu. O et al. [42] extend the attack paths to
attack graph and achieve the complexity of O(N2logN).
Aiming to fixing the problems that MulVAL cannot repre-
sent network protocol vulnerabilities and does not support
advanced types of communication and thus cannot model
cyber-attacks on networks including IoT devices or indus-
trial components, Orly Stan et al. [43] present an extended
network security model for MulVAL considering the short-
range communication protocols and vulnerabilities.

Deeplog [19] divides the logs generated by concur-
rent threads into different sequences, and helps users find
anomalies by constructing a workflow model for each indi-
vidual task. Xiaojun Xu et al. [44] calculate the similarity of
binary functions from different platforms to match threats.
HOLMES [45] constructs a high-level graph according to the
workflow and generates a compact graph by reducing noise
and using priority sorting technology. POIROT [46] pro-
poses the query graph, which is similar to the provenance
graph. Segugio [47] focuses on who is querying what infor-
mation and constructs a machine-domain bipartite graph
based on DNS traffic between clients and the resolver.

Typically, many researchers apply and improve
Node2Vec [48] and other graph embedding algorithms to
study efficient techniques of heterogeneous graph learn-
ing. In fact, these emerging methods have already been
applied in many fields such as recommendation systems,
gene prediction, and so on, and also found effective in
cybersecurity [21] [49] [50] in recent years. Hindroid [49]
is the first work to apply heterogeneous information net-
work (HIN) in the information security field. Wang et al.
[50] consider node-level and semantic-level attentions, and
propose a heterogeneous graph attention network (HAN)
to handle heterogeneous graphs. HinDom [21] combines
domain similarity to formulate multiple meta-paths and
fully represents the rich semantics contained in DNS-related
data.

7 DISCUSSION

While DeepAG is capable of making timely, concrete, and
robust detections and predictions for attacks, and fixes the
challenges as illustrated in section I, it is not complete
enough because of lack of deployment, which is significant
for deep learning models of cybersecurity from develop-
ment environments to business operations systems. How-
ever, regarding it as our future work, we analyze the main
challenges in this process.

Firstly, though there is often no shortage of data in
the field of cybersecurity, good data sets are usually pro-
prietary. Security vendors tend to ”hide” security-related
data, so it is usually impossible to obtain representative
and accurate labeled data. Second, due to high profession-
ality of data cleaning and labeling, annotating data sets
related to network security detection requires professional
security engineers. Thirdly, though DeepAG achieves lower
complexity and higher accuracy than that of other states
of the art in terms of detection, it still contains a large
amount of calculation, posing requirements for the running
environment and configuration. However, generally, the
complexity of model with a lower error rate cannot be too
low. Thus, the choice between efficiency and accuracy is a

huge challenge, especially in security monitoring systems,
which often require a rapid and real-time response to risks.

Besides, the deep learning framework is usually so
complex that it contains hundreds of thousands of codes
and many dependencies and almost inevitably known or
unknown bugs. Moreover, the rapidly changing nature of
cybersecurity makes it extremely difficult to maintain the
system, because frequent data and model changes mean
that other parts of the system also need to be changed.
On the other hand, because the optimization goal of the
algorithm is to make a globally optimal solution on the
specified data set, the change in the size and distribution
of the data set or the increase of black samples during
the iteration process may cause the change of decision
boundary of the model, making the attacks that system
could originally detect cannot be identified after the model
is updated.

In addition, our research is based on benign scenario.
Specifically, we assume DeepAG is not attacked by mali-
cious users, and attackers do not use the adversarial or tam-
pered sample to interfere with detection. However, to im-
prove the practicality of DeepAG and push its deployment,
we are trying to study the anti-attack ability of DeepAG,
focusing on the security of deep learning framework.

Finally, in the evaluation of graph construction, due
to the complicated calculation brought by our findings of
concurrency, it is difficult to test the accuracy of generat-
ing attack graph. In fact, this part of the work is under
investigation in our lab, and we are actively searching for
a solution to designing experiments. Nonetheless, we solve
the shortcomings of Deeplog which needs to find an optimal
g and is prone to be affected by the keys with negligible
probabilities, by setting the probability threshold for predic-
tion output. In that case, our separation methodology also
provides useful insights towards the graph construction.

All the above challenges have made the deployment
difficult. However, it is not unsolvable. Many researchers
have developed practical systems based on their works and
achieved great performance [51] [52]. With this confidence,
we are fixing this problem and envision that a large spec-
trum of works and practical deployments can be realized
along this road, contributing more power to cybersecurity.

8 CONCLUSION

To help proactive prevention for multi-step attacks, in this
paper, we propose DeepAG which can be used for detect-
ing attack sequences and predicting the potential threats.
Furthermore, DeepAG can deal with unexpected patterns
through the mechanisms of online upate and OOV word
processor. Moreover, it can construct the attack graph intu-
itively demonstrating the attack path to model a more com-
plicated situation, which will help users reduce the analysis
burden and quickly master the strategies of attackers.

In addition, we find DeepAG is potential in providing
a framework to achieve attack detection and prediction si-
multaneously. Though DeepAG performs better than other
states of the art, the semantic gaps among different types
of logs are difficult to eliminate. For future work, we will
try to fix the semantic gaps and improve the perfomance of
DeepAG in dealing with more comprehensive types of logs.
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